Джефф Хокинс, Сандра Блейксли. Об интеллекте

Рубрика: 03. О познании

В книге Об интеллекте Джефф Хокинс представляет революционную теорию на стыке нейробиологии, психологии и кибернетики и описывающую систему «память–предсказание» как основу человеческого интеллекта. Автор отмечает, что все предшествующие попытки создания разумных машин провалились из-за фундаментальной ошибки разработчиков, стремившихся воссоздать человеческое поведение, но не учитывавших природу биологического разума. Хокинс предполагает, что идеи, сформулированные им в книге Об интеллекте, лягут в основу создания искусственного интеллекта — не копирующего, а превосходящего человеческий разум. Кроме этого, книга содержит рассуждения о последствиях и возможностях создания разумных машин, взгляды автора на природу и отличительные особенности человеческого интеллекта.

Джефф Хокинс, Сандра Блейксли. Об интеллекте. – М.: Вильямс, 2016. – 240 с.

Скачать конспект (краткое содержание) в формате Word или pdf

Купить книгу в Ozon или Лабиринте

Глава 1. Искусственный интеллект

В начале 80-х маститые ученые в области кибернетики совершенно не интересовались тем, как работает настоящий мозг. Я интуитивно считал такой подход вопиюще неправильным. Фундаментальные принципы работы компьютера и функционирования человеческого разума в корне различны. Основой первой является программирование, а второго – процесс самообучения. Я понял, что основной причиной, препятствующей созданию разумных механизмов, является их транзисторная структура.

К сожалению, преподаватели и студенты Массачусетсского института не поддержали меня в этих стремлениях. Мне прямо сообщили, что в сфере создания искусственного интеллекта (ИИ) нет места изучению живого мозга. В 1981 году мои документы на поступление в аспирантуру были отклонены приемной комиссией.

Кибернетики, работающие в сфере искусственного интеллекта, убеждены в том, что смогут создать мыслящий компьютер, увеличив объем его памяти и ресурсов для обработки данных. Но не тут-то было. Ключевой недостаток искусственного интеллекта – отсутствие зоны, отвечающей за понимание. Все попытки создания искусственного интеллекта заканчивались изобретением очередной программы, обеспечивающей выполнение только одной четко определенной функции.

Компьютеры так и не научились обобщать или проявлять гибкость. Даже создатели программ отмечали, что их детища не могут мыслить, как человек. Некоторые проблемы искусственного интеллекта поначалу казались простыми, но со временем так и не были найдены способы их решения. Даже сегодня ни один компьютер не может воспринимать речь так же легко, как трехлетний ребенок, или видеть так же хорошо, как, скажем, мышь.

У идеи искусственного интеллекта остались некоторые сторонники, но большинство ученых считает его создание невозможным. Джон Сирл, один из наиболее именитых преподавателей философии Калифорнийского университета (Беркли), утверждал, что у компьютера разума нет и быть не может. В доказательство своих взглядов в 1980 году он предложил провести эксперимент, который назвал Китайской комнатой.

Участник эксперимента, подобно компьютеру, манипулирует символами, но не может придать им какого бы то ни было смысла. Следовательно, заключил Сирл, машина, или физическая система способная выполнять определенные функции, не может стать разумной и действовать осознанно. Сирл отмечал, что он затрудняется дать определение понятию разума, однако полон уверенности, что, независимо от определения, компьютеры разумом не обладают и обладать не могут.

Ключевой тезис моей книги: понимание не поддается оцениванию на основе наблюдения внешних реакций.

Глава 2. Нейронные сети

В январе 1986 года я приступил к учебе в аспирантуре Калифорнийский университет (Беркли) по специальности «Биофизика». Создатели нейронных сетей (НС) оказались далеко впереди своих коллег, бившихся над разработкой искусственного интеллекта. НС были построены, хоть и весьма приблизительно, по принципу биологической нервной системы. Вместо того чтобы заниматься программированием, исследователи нейронных сетей, так называемые коннекционисты, сосредоточились на изучении того, какие типы поведения генерируют различные нейронные комбинации.

Мозг состоит из нейронов, стало быть, мозг – это нейронная сеть. Задачи коннекционистов состояли в том, чтобы изучить неуловимые свойства разума путем изучения взаимодействия нейронов. Нейронные сети отличаются от компьютеров тем, что у них нет центрального микропроцессора и они не сохраняют информацию в центральном блоке памяти. Информация, занесенная в память нейронной сети, сосредоточена в связях – точно так же, как и в головном мозге человека.

На тот момент я четко видел три фактора, критичных для понимания работы мозга. Во-первых, в исследования мозга следует включать временной критерий, ведь скорость обработки потока информации чрезвычайно высока. Данные, поступающие в мозг и исходящие из него, никогда не пребывают в статическом состоянии. Во-вторых, мозг насквозь пронизан обратными связями. В-третьих, любая модель (или теория мозга) должна соответствовать биологическому строению живого мозга.

Первые нейронные сети представляли собой крайне упрощенные модели, которые не удовлетворяли ни одному из трех описанных выше требований. Я рассчитывал, что разработчики нейронных сетей в будущем перейдут от простых моделей к более совершенным и реалистичным, однако этого не произошло.

По моему мнению, фундаментальной проблемой большинства нейронных сетей является следующая их особенность, присущая также программам, основывающимся на принципе искусственного интеллекта. И программы, базирующиеся на принципах искусственного интеллекта, и нейронные сети отягощены акцентом на поведении. Называют ли его «ответами», «моделями» или «выходными сигналами», предполагается, что именно в поведении, моделируемом НС или ИИ, заключается их «разумность». Об успешности компьютерной программы или нейронной сети судят по тому, выдает она правильный или желаемый выходной сигнал. Со времен Алана Тьюринга между интеллектом и поведением ставят знак равенства.

Небольшая отколовшаяся группа теоретиков разработала НС, положив в ее основу автоассоциативную память. В отличие от НС нейроны автоасссоциативной памяти были соединены большим числом обратных связей. Автоассоциативная память способна воспроизвести сохраненную модель в неизмененном виде, даже если все, что у вас есть в наличии, – ее искаженный вариант. Имея в наличии лишь часть усвоенной последовательности, автоассоциативная память воссоздаст ее всю. Именно таким способом обучаются люди – усваивая последовательности паттернов.

Согласно положениям функционализма, наличие интеллекта или обладание разумом – исключительно свойство организации, не имеющее ничего общего с составными элементами (еще говорят эмерджентное свойство). Разум присущ любой системе, составные части которой, будь то нейроны, кремниевые чипы или что-то еще, взаимодействуют друг с другом.

Согласно изложенному принципу, искусственная система, имеющая ту же архитектуру, что и биологическая будет по-настоящему разумной. Защитники идеи искусственного интеллекта, коннекционисты и я сам являемся функционалистами, поскольку все мы уверены в том, что интеллект обеспечивает человеку нечто отнюдь не мистическое в головном мозге.

Созданные нами наземные средства передвижения, способные обогнать гепарда, имеют не четыре конечности, а колеса. Несмотря на то что в процессе эволюции не было создано ничего, хотя бы отдаленно напоминающего колесо, последнее, тем не менее, является революционным изобретением, позволяющим великолепно передвигаться по ровным поверхностям. Философы порой обращаются к метафоре «когнитивного колеса», отражающей возможное решение проблемы создания искусственного интеллекта, вероятно, принципиально отличное от того, как функционирует мозг.

Я убежден, что данная интерпретация вводит теоретиков искусственного интеллекта в глубокое заблуждение. Как показал эксперимент Сирла «Китайская комната», поведенческого соответствия недостаточно. Поскольку интеллект изначально присущ головному мозгу, нам следует заглянуть внутрь, чтобы понять, что представляет собой разум.

Глава 3. Мозг человека

Независимо от размеров, общей чертой, характерной для коры головного мозга большинства млекопитающих, является шестислойное строение. Кора головного мозга образована нервными клетками, или нейронами. На площади, равной крошечному квадрату со стороной один миллиметр содержится примерно сто тысяч нейронов. Количество нервных клеток в коре головного мозга составляет порядка 30 млрд. За разные психические функции отвечают определенные отделы головного мозга. Каждая зона полунезависима и специализируется на определенных аспектах восприятия или мышления.

Функциональная организация головного мозга имеет форму отраслевой иерархии. Иерархическое расположение и физическая позиция в пространстве не тождественны: низшие зоны поставляют информацию в высшие через определенные нейронные каналы связи. Высшие зоны используют совершенно другие нейронные каналы связи для передачи обратных сигналов.

Первичные сенсорные зоны, в которые непосредственно поступает информация об окружающем мире, являются низшими функциональными зонами. На более высоких иерархических уровнях расположены зоны, отвечающие за запоминание всевозможных визуальных объектов (людей, животных, предметов и т.д.) и ассоциативные связи между ними. Хотя иерархия строения коры головного мозга действительно существует, не стоит считать, что информационные потоки всегда движутся одними и теми же путями.

Рис. 1. Строение нервной клетки

Любая нервная клетка состоит из тела клетки, или сомы, и двух типов внешних древоподобных ветвей: аксона («передатчика») и дендритов («приемников»). Нейрон получает сигналы (импульсы) от других нейронов через дендриты и передает сигналы, сгенерированные телом клетки, вдоль аксона, который в конце разветвляется на волокна. На окончаниях этих волокон находятся синапсы. Синапсы (от греч. synapsis – соединение, связь) – это специализированные функциональные контакты между возбудимыми клетками, служащие для передачи и преобразования сигналов.

По функциональному значению синапсы могут быть возбуждающими и тормозящими – в зависимости от того, активируют они или подавляют деятельность соответствующей клетки. В результате взаимодействия двух нейронов могут возникнуть совершенно новые синапсы. Формирование и усиление синапсов – это то, от чего зависит процесс запоминания.

В коре головного мозга существует много типов нейронов, но 80% из них являются пирамидальными. Типичная пирамидальная клетка имеет несколько, тысяч синапсов.

Выдающийся ученый Вернон Маунткастл – нейрофизик, работавший в Университете Джона Хопкинса, Балтимор, – в 1978 году опубликовал работу под названием Организующий принцип мозговой функции. Он предположил, что при выполнении разных функций кора головного мозга использует один и тот же инструмент. В то время как именитые анатомы бились над поиском ничтожных различий между зонами коры головного мозга, он обратил внимание именно на ее однородность. Механизм зрительного восприятия не отличается от слухового восприятия, а слуховое восприятие – от двигательной функции.

Казалось бы, вполне естественно предположить, что различные функции мозг выполняет разными способами. Кора головного мозга сама себя подразделяет на специфические функциональные зоны, руководствуясь исключительно опытом человека. Человеческий мозг обладает редкостным даром – способностью к обучению и адаптации к изменениям. Это признак очень гибкой системы, а не такой, у которой есть тысяча решений на тысячу задач.

Зоны мозга развивают специализированные функции в зависимости от типа поступающей к ним информации. Кора головного мозга не является жесткой структурой, части которой предназначены для выполнения разных функций согласно разным алгоритмам, подобно тому, как разделение поверхности Земли на страны не было «запрограммировано» в ходе эволюции.

Вы слышите звук, видите изображение, чувствуете давление, но для вашего мозга не существует принципиальных различий между типами подачи информации. Нервный импульс – это нервный импульс. Он одинаков независимо от того, что послужило его причиной. Все, чем оперирует ваш мозг, – это сигналы. Мозг очень пластичен, а входящая информация, которая поступает в него, является не чем иным, как сигналами. Коре головного мозга безразлично, какой из органов чувств посылает сигналы.

Все перечисленное означает, что базовой основой интеллекта не являются сенсорные каналы взаимодействия или их комбинации. Благодаря сигналам кора головного мозга создает модель, очень близкую к реальному миру, а потом эту модель фиксирует в памяти.

Глава 4. Память

Принципы действия неокортекса и компьютера различны. Вместо вычисления решений и программирования поведения кора головного мозга использует память. Четыре особенности памяти неокортекса коренным образом отличают ее от памяти компьютера:

  • неокортекс запоминает последовательности элементов, а не отдельные элементы окружающего мира;
  • неокортекс вспоминает последовательности автоассоциативно;
  • неокортекс запоминает последовательности в инвариантной форме;
  • неокортекс сохраняет последовательности иерархически.

Все наши вспоминания хранятся в синаптических связях между нейронами. Если учесть, что неокортекс содержит огромнейшее количество информации, но в каждый конкретный момент времени мы можем вспомнить лишь малую ее толику, то можно предположить, что любое воспоминание обеспечивается лишь ограниченным количеством нейронов и синаптических связей между ними.

Когда вы начинаете вспоминать об интерьере своего дома, то сначала активизируется один набор нейронов, потом он приводит в действие следующий набор и так далее. Объем памяти неокортекса невероятно вместителен. Тем не менее в каждый конкретный момент времени мы можем погрузиться лишь в несколько воспоминаний, вызываемых лишь как последовательность ассоциаций.

Второе ключевое свойство человеческой памяти – ее автоассоциативная природа. Так, заметив, что из-за шторы выглядывают ботинки вашего сына, вы автоматически представите его в полный рост. Привычку некоторых людей «читать мысли» собеседника и заканчивать чужие высказывания считают дурным тоном. Но наш мозг поступает подобным образом постоянно. Подобная склонность заниматься постоянным додумыванием фактов редко осознается человеком, однако она является фундаментальной характеристикой памяти. В любой момент времени часть может активизировать целое – в этом состоит суть автоассоциативных воспоминаний.

Третья особенность памяти неокортекса – формированию инвариантных представлений. Память компьютера устроена так, чтобы сохранять информацию в максимально неизменном виде. Память неокортекса действует иначе. Мозг не запоминает с абсолютной точностью все увиденное, услышанное или почувствованное. Так происходит потому, что мозг запоминает важные взаимосвязи внешнего мира, а не привязывается к отдельным его элементам. Например, лицо вашего друга сохраняется в памяти в инвариантной форме, независимо от угла видения. Вспоминания сохраняются в форме, охватывающей существенные связи между элементами целого, а не преходящие детали.

Три рассмотренные особенности памяти неокортекса необходимы для прогнозирования будущего на основе воспоминаний о прошлом.

Глава 5. Новые рамки понимания интеллекта

Наш мозг использует сохраненные воспоминания для того, чтобы постоянно осуществлять прогноз относительно всего, что мы видим, слышим, чувствуем. Подавляющее большинство прогнозов продуцируются неосознанно. Прогностическая функция настолько органична для мозга, что наше восприятие мира не основывается исключительно на сигналах, которые мы непрерывно получаем от органов чувств. На самом деле восприятие действительности является комбинацией наших ощущений и прогнозов, составляемых мозгом на основе воспоминаний.

Прогнозирование, по моему мнению, – это не просто одна из функций коры головного мозга. Это первичная функция неокортекса и основа интеллекта. Ваше восприятие и понимание мира самым непосредственным образом связано с прогнозированием. В вашем мозге хранится модель мира, которая подвергается постоянному сопоставлению с реальностью. Обратите внимание, что наши тесты на определение коэффициента интеллекта (IQ) по своей сути являются прогностическими задачами. Даже наука основана на прогнозировании. Мы расширяем свои знания о мире путем формулирования гипотез и их проверки.

В мозге рептилии отсутствует неокортекс. Согласно эволюционной теории, появление в головном мозге коры знаменует переход к умению прогнозировать. Однако наши моторные способности и умение планировать намного превосходят способности наших ближайших животных сородичей. Как удается коре головного мозга, изначально предназначавшейся для составления сенсорных прогнозов, генерировать сложные модели поведения, присущие лишь человеку? Откуда могли появится эти модели столь неожиданно? Есть два возможных ответа

Первый: алгоритм функционирования коры головного мозга чрезвычайно мощный и гибкий. Путем незначительных изменений способа соединения, что присуще только человеку, она может создавать новые сложные модели поведения. Второй: поведение и прогноз являются двумя сторонами одной и той же медали. Кора головного мозга действительно может предвидеть будущее, но ее сенсорные прогнозы будут отличаться точностью лишь при учете текущих моделей поведения.

В процессе эволюции кора головного мозга (особенно ее передняя часть) у людей увеличилась. По сравнению с другими приматами и ранними гоминидами у нас непропорционально большой лоб, основное назначение которого – служить вместилищем для очень большой передней части коры головного мозга. Способность человека осуществлять сложнейшие движения связана с тем, что моторная зона коры головного мозга у homo sapience имеет намного больше связей с мышцами тела, чем у других млекопитающих. Поведение большинства животных генерирует «старый» мозг. А у человека передняя часть неокортекса узурпировала большую часть моторного контроля.

Кора головного мозга в первую очередь развивалась с целью запоминания мира. Животные с достаточно большой корой головного мозга воспринимают мир ничуть не хуже нас с вами. Однако то, что делает человека уникальным, – это доминирующая роль коры головного мозга в формировании поведения. Именно по этой причине у людей существует система речи, именно поэтому создаются замысловатые инструменты.

Вот мы и подошли к тому, чтобы нарисовать полную картину. Природа создала рептилий со сложными органами чувств и сложными, но относительно устойчивыми моделями поведения. Потом она сделала открытие: если дополнить их мозг системой памяти, к которой подключить поток сенсорной информации, животное сможет запоминать свой прошлый опыт. Когда животное попадает в такую же или подобную ситуацию, происходит вызов воспоминания из памяти, а это ведет к прогнозированию того, что, вероятнее всего, должно случится. Таким образом, разум и понимание начались с системы памяти, которая посылала прогнозы в поток сенсорного восприятия. Эти прогнозы являются сущностью понимания. Знать что-либо означает, что вы можете составлять об этом предположение.

Кора головного мозга развивалась в двух направлениях. Во-первых, она увеличилась, и, соответственно, научилась хранить более сложные воспоминания. Она могла запоминать больше информации и составлять прогнозы на основе более сложных связей. Во-вторых, кора начала взаимодействовать с моторной системой «старого» мозга. Чтобы спрогнозировать, что будет дальше, ей нужно учитывать текущие действия. В результате управление большей частью моторного поведения человека перешло к неокортексу. Уже не ограничиваясь составлением прогнозов на основе поведения, диктуемого «старым» мозгом, неокортекс человека управляет его поведением для удовлетворения своих ожиданий. Кора головного мозга человека особенно велика, поэтому обладает большой запоминающей способностью. Она постоянно составляет прогнозы того, что вы почувствуете, услышите, увидите, причем вы этого не осознаете.

Прогнозы – это наши мысли, а в сочетании с сенсорными входными потоками информации – наше восприятие. Я назвал такое видение мозга запоминающе-прогностическими рамками интеллекта. Если бы «Китайская комната» включала подобную систему памяти, которая могла бы прогнозировать, какой иероглиф появится следующим, мы с полной уверенностью могли бы сказать, что она поняла китайский и поняла рассказ. Теперь нам понятна ошибка Алана Тьюринга. Прогнозирование, а не поведение является свидетельством наличия разума.

Глава 6. Как работает кора головного мозга

Инвариантные представления. Рис. 2 представляет первые четыре зрительные зоны, вовлеченные в распознание объектов окружающего мира. Биологи обозначают эти зоны V1, V2, V4 и IT. Входной визуальный сигнал показан стрелкой под зоной V1. Зрительная информация с сетчатки ваших глаз передается к V1. Этот входной поток информации можно представить, как непрерывно изменяющиеся последовательности сигналов.

Рис. 2. Первые четыре зоны в распознавании объектов

Нервные клетки зоны V1 ничего не знают о лицах, автомобилях, книгах или других объектах, постоянно встречающихся на вашем пути. Все, что они знают, – это крошечная, как укол булавки, часть всего мира перед вашими газами. А вот если мы введем электрод в верхнюю зону IT, то обнаружим нечто совершенно невероятное. Мы увидим, что некоторые клетки указанной зоны возбуждаются и остаются активными, когда в поле зрения человека появляются целые

объекты. Например, мы можем найти клетку, энергично реагирующую каждый раз, когда в поле зрения появляется лицо. Она не включается-выключается при каждой последующей саккаде,[1] как это делают клетки зоны V1. Рецептивное поле такой клетки покрывает большую часть зрительного пространства, и она возбуждается всякий раз, когда человек видит лица.

По мере продвижения от сетчатки до зоны IT изменчивые, пространственно специфические, ориентированные на распознание мелких деталей нейроны сменяются нейронами высших зон – пространственно неспецифическими, постоянно активными и способными распознавать целые объекты. Описать данную схему несложно. Проходим быстренько четыре стадии, и вот вам лицо. Но ни одна компьютерная программа, ни одна математическая формула не в состоянии обеспечить решение подобной задачи с той же надежностью и универсальностью, как это делает человеческий мозг.

Мозг постоянно продуцирует полисенсорные прогнозы. Я отгибаю скрепку на ручке и ожидаю, что, стоит мне отпустить пальцы, прозвучит характерный щелчок, вызванный ударом скрепки по корпусу ручки. Не услышав этого щелчка, я бы очень удивился. Мой мозг точно прогнозирует, когда я услышу звук и каким именно он будет. Для того чтобы такой прогноз осуществился, информация пересекает по иерархии все соматосенсорные зоны коры головного мозга и по обратной связи поступает назад по иерархии и слуховой зон (рис. 3).

Рис. 3. Потоки информационных сигналов передвигаются вверх по иерархически организованным сенсорным зонам, а затем возвращаются к низшим зонам. Таким образом формируется объединенный сенсорный опыт и осуществляется прогностическая функция

Я просто поражаюсь, насколько интегрированными являются все наши перцепционные прогнозы. Хотя они могут казаться простыми, даже тривиальными, надо помнить, насколько они всеобъемлющи. Они могут формироваться только на основе мощных скоординированных потоков информации, непрерывно циркулирующих в двух противоположных направлениях по иерархии зон коры головного мозга.

Почему кора головного мозга устроена иерархически? Одна из наиболее важных концепций данной книги состоит в том, что иерархическая структура коры головного мозга хранит модель иерархического строения внешнего мира.

Строение зон коры головного мозга. На рис. 4 приведено схематическое строение зоны коры головного мозга. Каждое мгновение нашей жизни каждая зона коры головного мозга сравнивает набор ожидаемых колонок, возбужденных сверху, с набором колонок, которые уже были возбуждены снизу. Там, где эти два набора пересекаются, создается наше восприятие. Если бы поступали совершенные сигналы снизу и у нас были бы совершенные прогнозы, тогда набор возбужденных колонок всегда совпадал бы с набором ожидаемых колонок. Но очень часто этого не происходит. Метод сочетания частичного прогноза и частичного входного сигнала позволяет определиться с неоднозначным входным сигналом, он позволяет заполнить пробелы в информации и остановить выбор на одном из альтернативных вариантов.

Рис. 4. Слои и колонки в зоне коры головного мозга

Именно так мы определяемся, изображено на картинке два лица или ваза. Именно так мы разветвляем моторный поток на написание или произнесение вслух Геттисбергской речи.[2]

Как происходит процесс обучения. Правило «обучения Хебба»: когда два нейрона активизируются одновременно, синаптические связи между ними усиливаются. Основными составляющими обучения являются формирование классификаций и создание последовательностей. Основой формирования последовательностей является группирование паттернов, которые относятся к одному и тому же объекту. Один из способов – группировать сигналы, следующие друг за другом. Когда ребенок держит в руке игрушку и медленно ее переворачивает, его мозг может с уверенностью считать, что непрерывно изменяющееся изображение на сетчатке все равно принадлежит одному и тому же объекту, а значит, изменяющийся набор сигналов можно сгруппировать вместе.

В первые годы вашей жизни «записи» о мире формируются в высших зонах коры головного мозга. Однако по мере вашего дальнейшего обучения они перемещаются во все более низкие зоны иерархии коры головного мозга. Когда простые репрезентации передвигаются вниз, высшие зоны коры головного мозга получают возможность учить новые, более сложные, сигналы. Согласно моей теории, именно таков путь становления эксперта.

Опытный менеджер может сразу распознать недостатки и преимущества структуры организации, в то время как начинающий просто не понимает пока этих вещей. Они получают один и тот же входной сигнал, но модель новичка не настолько совершенна, как модель опытного менеджера.

Гиппокамп – вершина всех вершин. Три большие структуры мозга лежат под оболочкой коры головного мозга и связаны с ней. Это базальные ганглии, мозжечок и гиппокамп (рис. 5). Все три структуры возникли раньше, чем кора головного мозга. В очень грубом приближении мы можем утверждать, что базальные ганглии были примитивной двигательной системой, мозжечок изучал точные временные соотношения событий, а гиппокамп сохранял в памяти конкретные события и места. В определенной степени кора головного мозга присвоила себе функции, изначально принадлежавшие им. Например, человек, родившийся без мозжечка, будет страдать от недостатков координации и вынужден будет прилагать более сознательные усилия при передвижении, но в остальном он будет вполне нормальным.

Рис. 5. Базальные ганглии, мозжечок и гиппокамп

Но вот гиппокамп – другого поля ягода. Это одна из наиболее изученных зон мозга, потому что она является обязательной для формирования новых запоминаний. Если вы потеряете обе половины гиппокампа (как и многие другие составляющие нервной системы, он присутствует и в левом, и в правом полушариях головного мозга), вы утратите способность запоминать новую информацию.

Классический подход к гиппокампу следующий: здесь формируется память о новых событиях, а затем, через дни, недели, месяцы, эта новая информация перемещается в кору головного мозга. В отличие от коры головного мозга структура гиппокампа гетерогенная, он состоит из нескольких специализированных отделов. Гиппокамп быстро запоминает любые полученные сигналы. Это его уникальная роль, с которой он отлично справляется.

Положение гиппокампа на вершине корковой иерархии оптимально для запоминания новых сигналов. У него также наилучшее положение для того, чтобы вызывать эти запоминания и передавать их на хранение в иерархию коры головного мозга. Правда, последний процесс – весьма небыстрый. Вы можете моментально запомнить свежее событие в гиппокампе, но, для того чтобы сохранить его в коре головного мозга навсегда, вам нужно повторять полученный опыт снова и снова, в реальности или мысленно.

У вашей коры головного мозга существует еще один основной способ передачи информации от одной зоны к другой вверх по иерархии. Этот альтернативный путь начинается с клеток слоя 5, проецирующихся в таламус а затем из таламуса – в следующую корковую зону. Любые две зоны коры головного мозга, непосредственно связанные друг с другом в иерархии, связаны еще и косвенно – через таламус (о том, что эмоциональная реакция быстрее рациональной, см. Мария Конникова. Психология недоверия. Как не попасться на крючок мошенников).

Если бы я показал лицо со странной меткой на носу, то вы почти наверняка опознали бы именно лицо. Затем ваши низшие уровни зрительного восприятия заметили бы: что-то не так. Выявленная ошибка вызывает активизацию дорожки повышенного внимания. Подробности будут передаваться альтернативным путем, пропуская группирование, которое происходит в нормальных условиях. Ваше внимание остановится на метке. Теперь вы видите не только лицо, но и метку. Если она выглядит достаточно необычно, то может полностью завладеть вашим вниманием.

Глава 7. Сознание и творчество

Разумен ли одноклеточный организм? Если под «разумом» понимать человеческий интеллект, то ответ будет отрицательным. Однако, если учесть, что это одноклеточное находится в самом дальнем конце континуума видов, использующих прогнозирование и память для оптимизации репродуктивных процессов, ответ будет положительным. Память и прогнозирование используются абсолютно всеми живыми существами. Разница в методах – от простых до самых изощренных.

В развития интеллекта можно выделить три этапа, причем на каждом из них использовалась память и прогнозирование. На первом этапе простейшие организмы использовали ДНК как средство запоминания и прогнозирования. Каждая отдельная особь не могла обучиться и приспособиться в течение своей жизни, она была способна лишь передать своим потомкам информацию о мире, полученную посредством ДНК от предков.

Второй этап начался, когда природа изобрела модифицируемые нервные системы, способные быстро усваивать сведения, получаемые из внешней среды, и сохранять их в памяти. На данном этапе отдельные особи могли усваивать структуру мира и адаптироваться к ней в рамках своей жизни. Но механизмы передачи приобретенных знаний, навыков и умений другим представителям своего вида, равно как и потомкам, отсутствовали (частично это было осуществимо путем непосредственного наблюдения). Именно на втором этапе у живых существ появилась (а со временем и увеличилась) кора головного мозга, но это было только начало.

Третьего и последнего этапа развития интеллекта достиг только человек. Этот этап ознаменовался значительным увеличением неокортекса и возникновением системы речи. Мы, люди, способны не только глубоко изучить структуру мира и наследие предков, но также посредством речи передать свои знания другим. Так осуществляется связь между поколениями.

Что такое творчество? Творчество можно определить, как способность прогнозирования на основе аналогий. Если творчество присуще мозгу любого человека, то как можно объяснить различия в степени выраженности творческих способностей? Модель «Память-предсказание» предлагает два возможных ответа. Первый опирается на природные задатки, а второй – на обстоятельства воспитания.

Особенности прогностического процесса, а значит, и наши дарования, базируются на нашем опыте. Опасность ложной аналогии существует всегда. История науки богата примерами разоблачения великолепных на первый взгляд аналогий. Так, например, известный астроном Иоганн Кеплер убедил себя в том, что орбиты шести известных на то время планет предопределяются Платоновыми многогранниками. Пусть заблуждение Кеплера послужит хорошим уроком для всех ученых.

Мозг – это орган, создающий модели и ставящий творческие прогнозы. Эти прогнозы и модели могут как прояснить истину, так и сбить с правильного пути познания мира. Причем, при отсутствии правильных корреляций человеческий мозг склонен к тому, чтобы принять ошибочные предположения. Псевдонаука, фанатизм, религиозность, нетерпимость очень часто имеют общий корень – ошибочные аналогии.

Что такое сознание? Я думаю, что считать сознание неким магическим «соусом», который прилагается к мозгу, в корне неверно. Но и в наше время многие люди продолжают верить, что сознание – это нечто особенное, то, что невозможно объяснить в редукционистских биологических терминах. Я считаю, что между присутствием у живого существа сознания и наличием у него неокортекса можно поставить знак равенства.

По моему мнению, сознание тождественно способности сохранять единицы информации в декларативном виде так, чтобы вы могли вызвать их из памяти по своему желанию и пересказать кому-то другому посредством устной или письменной речи.

Если вы спросите меня, где я был в прошлую субботу, я вам смогу рассказать об этом. Вот вам пример единицы информации, сохраненной в мозге в декларативном виде. С другой стороны, если вы спросите меня, как при езде на велосипеде удерживать его в состоянии равновесия, я порекомендую вам крепче держаться за руль и давить на педали, но не смогу предоставить более точных объяснений. Дело в том, что удержание равновесия на велосипеде обеспечивается нейронной деятельностью «старого» мозга, т.е. воспоминание об этом процессе не сохраняется в декларативной форме.

Воображение – это, по сути, вариант планирования, или реализации прогностической функции неокортекса, позволяющее судить о последствиях действий еще до их совершения.

Формирование модели мира во многом основано на обычаях, культуре и влиянии ближайшего окружения. Если ребенок вырос в доме, где его любят, где о нем проявляют заботу, с родителями, которые чутко относятся к его эмоциональным потребностям, он, становясь взрослым, как правило, прогнозирует, что мир – это дружественное и безопасное место. Дети, подвергавшиеся жестокому обращению со стороны одного или обоих родителей, склонны прогнозировать будущие события как опасные или жестокие и считать, что никому не стоит доверять (причем независимо от того, насколько хорошо с ними обращаются). Психология, в основном, обращается к последствиям раннего жизненного опыта, привязанностей и воспитания, поскольку именно в этот период мозг «закладывает фундамент» своей модели мира.

Ваша культура (и опыт, полученный в семье) прививает вам стереотипы, которые, к сожалению, являются неотъемлемой частью вашей жизни. В этой книге вполне можно заменить словосочетание инвариантная репрезентация (или инвариантное запоминание) на стереотип, при этом смысл мало изменится. Прогнозирование на основе аналогии – в значительной степени то же самое, что и оценка на основе стереотипа.

Способ, к которому мы должны прибегать для предотвращения ущерба, наносимого стереотипами, при воспитании своих детей, – это учить их распознавать ложные стереотипы, проявлять больше эмпатии и скептицизма. Нам нужно развивать эти навыки критического мышления в придачу к прививанию лучших качеств, нам известных. Скептицизм, являющийся основой научного метода, – единственный способ отличить факты от фикции.

Глава 8. Будущее разума

Нужно ли нам создавать разумные машины? Некоторые люди полагают, что быть разумным – то же самое, что и обладать человеческой ментальностью. Они опасаются, что разумные машины однажды взбунтуются против «порабощения», потому что гнет претит людям. Они боятся, что разумные машины попытаются захватить мир, потому что разумные люди, как показывает история, постоянно борются за власть. Все эти опасения базируются на ошибочной аналогии. Они основываются на объединении разума, т.е. алгоритма коры головного мозга, с эмоциональными устремлениями «старого» мозга, такими как страхи, стремление к обладанию, неприятие насилия. А ведь у разумных машин не будет подобных побуждений.

[1] Саккады (от старинного французского слова, переводимого как «хлопок паруса») — быстрые, строго согласованные движения глаз, происходящие одновременно и в одном направлении, амплитуда которых не превышает 1 угловой град. Человек делает около трех саккад в секунду.

[2] Геттисбергская речь Авраама Линкольна — одна из известнейших речей в истории Соединённых Штатов Америки. Президент произнёс её 19 ноября 1863 года при открытии Национального солдатского кладбища в Геттисберге, штат Пенсильвания. За четыре с половиной месяца до этого произошла решающая Битва при Геттисберге, закончившаяся победой армии Севера над конфедератами.


Прокомментировать