Проверка гипотез: одновыборочные критерии
Ранее была изложена концепция выборочных распределений, которая позднее была использована для построения доверительных интервалов. В настоящей заметке основное внимание уделяется методам проверки гипотез, которые представляют собой часть теории статистического вывода, использующую информацию, содержащуюся в выборке. [1]
Применение статистики в этой заметке будет показано на сквозном примере «Процесс расфасовки кукурузных хлопьев». Будучи управляющим компании Oxford Cereal Company, вы отвечаете за процесс расфасовки кукурузных хлопьев по коробкам. Необходимо убедиться, что конвейер работает нормально, и каждая коробка содержит в среднем 368 г зерна. Для этого вы извлекаете из генеральной совокупности 25 коробок, взвешиваете их и оцениваете отклонение реального веса от номинального. Коробки из этой выборки могут содержать либо слишком мало, либо слишком много хлопьев. В этом случае следует остановить производство и определить причину неполадок. Анализируя разности между реальным весом и номинальным, необходимо решить, равно ли математическое ожидание генеральной совокупности 368 г или нет. Если равно, процесс расфасовки не требует вмешательства, если нет — следует остановить конвейер.
Нулевая и альтернативная гипотеза
Проверка гипотез обычно начинается с некоего утверждения, касающегося конкретного параметра генеральной совокупности. Например, при статистическом анализе процесса расфасовки кукурузных хлопьев естественно предположить, что конвейер работает нормально, и, следовательно, средний вес коробок равен 368 г. Гипотеза о том, что параметр генеральной совокупности равен ожидаемому, называется нулевой и обозначается как Н0. В нашем примере нулевая гипотеза заключается в том, что заполнение коробок осуществляется правильно и средний вес коробок равен 368 г. Сформулируем это следующим образом: Н0: μ = 368.