Перейти к содержимому

Александр Орлов. О методах проверки однородности двух независимых выборок

В последнее время я изучаю решения менеджеров в Fantasy Premier League (FPL). В частности, есть ли отличия в поведении лучших менеджеров, отобранных по результатам предыдущих сезонов, и случайной выборкой. Важный аспект такого исследования – вынесение суждения, однородны ли выборки. Можно ли объяснить различия случайностью, или они закономерны? Ранее я рассказал о критерии Колмогорова и трудностях его использования. Настоящая статья Александра Ивановича Орлова дает современный обзор методов проверки однородности двух независимых выборок. По ходу изложения я применяю критерии к задаче FPL. Этот текст набран с отступом.

Александр Иванович Орлов. О методах проверки однородности двух независимых выборок. – Заводская лаборатория. Диагностика материалов. 2020. Том 86. № 3. Стр. 67–76.

Подробнее »Александр Орлов. О методах проверки однородности двух независимых выборок

Как запустить второй экземпляр Excel

В последнее время я извлекаю большие объемы данных с использованием Power Query (PQ). Когда запущен PQ, работать в файлах Excel нельзя. Поэтому передо мной встала задача – запустить второй экземпляр Excel.exe, чтобы пока выполняется длительная процедура в PQ я мог бы работать с другими файлами Excel. Подробнее о плюсах и минусах работы с двумя экземплярами Excel см. Что такое экземпляры Excel и почему это важно?

Любопытно, что часто встречаемая рекомендация Microsoft…

… не работает. Может быть, это связано с тем, что рекомендация дана для Excel 2013, а у меня Excel 365…

Подробнее »Как запустить второй экземпляр Excel

Fantasy Premier League. Выбор команды перед первым туром

В первой заметке цикла я рассказал, что ряд менеджеров Fantasy Premier League демонстрирует высокие результаты на протяжении многих сезонов. Я выделил ТОР-10k менеджеров, показавших наивысшие результаты в сезонах 2017/2018–2021/22 (элиту), а также группу сравнения – аккаунты, отобранные случайным образом (поляну). Во второй заметке я показал, какие возможности для извлечения данных с сайта Fantasy Premier League предоставляет API и Excel Power Query. Начиная с этой заметки я буду рассказывать о различных аспектах игры, сравнивая поведение элиты и поляны. А начну с выбора команды к GW1.

Вратари

3 августа 2022 г. основной вратарь Лестера Каспер Шмейхель неожиданно перешел в Ниццу. Дэнни Уорд занял его место, а стоил он всего £4М. Многие прельстились уменьшить инвестиции во вратарей, и взяли Уорда и второго вратаря Лестера – Даниэля Иверсена.

Рис. 1. Распределение инвестиций во вратарей

Подробнее »Fantasy Premier League. Выбор команды перед первым туром

Извлечение больших данных Fantasy Premier League с помощью API и Excel Power Query

В предыдущей заметке я рассказал, что ряд менеджеров Fantasy Premier League демонстрирует высокие результаты на протяжении многих сезонов. Я выделил группу элитных менеджеров ТОР-10k, показавших наивысшие результаты в сезонах 2017/2018 – 2021/22, а также группу сравнения, включающую 70k аккаунтов, отобранных случайным образом. Сейчас я покажу, какие возможности для извлечения данных с сайта Fantasy Premier League предоставляет API и Excel Power Query. Если вы не знакомы с Power Query, рекомендую Кен Пульс и Мигель Эскобар. Язык М для Power Query.

Официальный сайт Fantasy Premier League предоставляет доступ к большим данным через API. На каждой API-странице имеется набор данных в разновидности текстового формата JSON (рис. 1). Вам не обязательно разбираться в спецификации формата – коннектор Excel Power Query распознает тип данных на странице и импортирует их без вашего участия.

Рис. 1. API-страница с общей информацией о текущем сезоне Fantasy Premier League

Подробнее »Извлечение больших данных Fantasy Premier League с помощью API и Excel Power Query

Александр Орлов. Математика случая

личаютКнига написан с целью преодоления разрыва между курсами по теории вероятностей и математической статистике и практическими потребностями специалистов широкого профиля, использующих статистические методы. Рассмотрены все основные понятия, используемые при применении современных статистических методов. Особое внимание уделено непараметрическим подходам и статистике нечисловых данных. Книга адресована всем, кому необходимо в сжатые сроки овладеть понятийной базой статистических методов.

Александр Иванович Орлов. Математика случая. Вероятность и статистика – основные факты. – М.: МЗ-Пресс, 2004. – 110 с.

Подробнее »Александр Орлов. Математика случая

Статистический вывод на основе критерия Колмогорова

Эта заметка родилась на стыке трех моих увлечений: футбол, Excel и статистика)) Известно, что число голов, забитых каждой командой в одном матче подчиняется распределению Пуассона. Я решил проверить это на результатах матчей английской премьер-лиги сезона 2021/2022. Всего было 38 туров по 10 матчей в туре, по две команды в одном матче. Итого 760 исходных значений.

Рис. 1. Распределение числа забитых голов

Скачать заметку в формате Word или pdf, примеры в формате ExcelПодробнее »Статистический вывод на основе критерия Колмогорова

5 любимых книг Билла Гейтса

Билл Гейтс опубликовал небольшое видео о своих любимых книгах всех времен. А внимание я обратил на это видео благодаря заметке Булата Гайфуллина, перевод которой представляю с добавлением ссылок на издания на русском и английском языках.

Подробнее »5 любимых книг Билла Гейтса

Стандартное отклонение и стандартная ошибка

Я читаю курс статистического мышления магистрам, и одна тема вызывает у них явные затруднения – чем стандартное отклонение отличается от стандартной ошибки, и в каких случаях, применять ту или иную статистику. А недавно в книге Искусство статистики Дэвида Шпигельхалтера я узнал про бутстрэппинг, и понял, как объяснить различия стандартного отклонения и стандартной ошибки.

Для начала зададим 100 значений стандартной нормально распределенной случайной величины. В этом контексте стандартная означает, что ее матожидание μ = 0, а среднеквадратичное отклонение σ = 1. Поскольку значения в Excel получены с помощью волатильной функции СЛМАССИВ(), после любого действия они пересчитываются. Поэтому диаграммы в заметке и в файле будут отличаться.

Рис. 1. Нормально распределенная случайная величина

Подробнее »Стандартное отклонение и стандартная ошибка

Нетривиальный Байес

Недавно прочитал Искусство статистики Дэвида Шпигельхалтера. На тему байесовской вероятности очень понравился пример с монетами. Сначала – фрагмент книги, а затем небольшая модель в Excel.

У вас в кармане три монеты: на одной два орла, на другой две решки, третья обычная. Вы наугад вытаскиваете монету, подбрасываете ее, и выпадает орел. Какова вероятность, что на другой стороне монеты тоже орел? Дайте свой ответ, прежде чем читать далее.

Рис. 1. Три монеты

Подробнее »Нетривиальный Байес

Дэвид Шпигельхалтер. Искусство статистики. Как находить ответы в данных

Статистика играла ключевую роль в научном познании мира на протяжении веков, а в эпоху больших данных базовое понимание этой дисциплины и статистическая грамотность становятся критически важными. Дэвид Шпигельхалтер приглашает вас в не обремененное техническими деталями увлекательное знакомство с теорией и практикой статистики.

Эта книга предназначена как для студентов, которые хотят ознакомиться со статистикой, не углубляясь в технические детали, так и для широкого круга читателей, интересующихся статистикой, с которой они сталкиваются на работе и в повседневной жизни. Но даже опытные аналитики найдут в книге интересные примеры и новые знания для своей практики.

Дэвид Шпигельхалтер. Искусство статистики. Как находить ответы в данных. – М.: Манн, Иванов и Фербер, 2021. – 448 с.

Подробнее »Дэвид Шпигельхалтер. Искусство статистики. Как находить ответы в данных